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Abstract: In this paper, we developed a numerical Algorithm for one and two-step hybrid block methods for the numerical
solution of first order initial value problems in ordinary differential equations using method of collocation and interpolation of
Taylor’s series as approximate solution to give a system of non linear equations which was solved to give a hybrid block
method. To further justify the usability and effectiveness of this new hybrid block method, the basic properties of the hybrid
block scheme was investigated and found to be zero-stable, consistent and convergent. The derived scheme was tested on some
numerical examples and was found to give better approximation than the existing methods. The errors displayed after solving
some selected initial value problems, revealed that, it is better to increase L (Derivative) rather than the step length k as
shown in our numerical results. Also, It was difficult to satisfy the zero-stability for larger k. In addition, the new method
converges faster with lesser time of computation, which address the setback associated with other methods in the literature.
Finally, the new method has order of accuracy for one-step as order Ten while order Eighteen for two-step.
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self-starting Runge-Kutta type methods which involve several
function evaluations per step, and the linear multi-step
methods, which requires fewer function evaluations per step
[2]. Conventionally, linear multi-step methods are
implemented in the predictor-corrector mode which is prone to
error propagation as the integration process progresses [10].
The disadvantages associated with the predictor-corrector
method led to the development of block methods from linear
multi-step methods [10]. Apart from being self-starting, the

o _ _ method does not require the development of predictors
= wy) - y(x)=x s x D[a,b] ) separately, and evaluates fewer functions per step when
compared to the Runge-Kutta type methods [13]. In this paper,
we are motivated by the work of Zurni Omar & Oluwaseun
adeyeye to develop two-step block method for solving first
order ordinary differential equations using collocation and
interpolation approach [8]. For the quest for better accuracy,
we develop one and two-step hybrid block methods using
same approach, this hybrid method has great properties, easy
to use and gives a better performance. Recent work on hybrid

1. Introduction

Mathematical models are developed to help in understanding
physical phenomena. These models often yield equations that
contains some derivatives of an unknown function of one or
several variables. Such equations are called Differential
Equation (DE) [1]. Our focus in this research work will be on
first order ordinary differential equations of the form:

where f is continuous in [a,b] , such equation in (1) is often
encountered in areas such as control theory, chemical kinetics,
circuit theory, biological sciences and many others. The fact
that most often, this class of equations cannot be solved
analytically, then the approach in developing several numerical
methods to approximate the solution of problem (1) comes in
[9, 12]. Some approaches to this alternative method (i.e.
numerical method) include the Nystrom type methods, the
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block methods can be seen in [1, 4, 5, 7, 10, 15, 16, 17]. We
note that all of these methods are governed by the Dahlquist's
barrier conditions [3]. However, this barrier conditions have
been circumvented in [2, 4, 5, 14]. This work is motivated by
the need to develop a new numerical method which can handle
system of equations of initial value problems of first order
ordinary differential equations. The new method is expected to
converge faster with lesser time of computation. Hence
address setback associated with other methods in the literature.
The method has order of accuracy for one-step as P=10 while
two-step P=18, the accessibly and accuracy of the methods
shall be illustrated on the table.

2. Development of Hybrid Block
Methods

In this section, we intend to derive one and two-step
hybrid block methods which will be use to generate the main
method and other methods required to set up the hybrid block

methods. We set out by approximating the analytical solution
of problem (1) with a Taylor’s series. According to [6], the
approximate solution of equation (1) fork=1,1=2 is
given as:

k-1 / k
zajyn+j +thZBijyn+j ;ap =+l )
=0 =l j=0

Similarly, the two-step hybrid block method for

k=2,l=2as:
k=2 / . k '
za_/‘yfw_/ +zhlzlgy‘yﬂ+j s ap =+1 (3)
j=0 =1 j=0

In order to obtain the main method for one-step we rewrite
equation (2) to be:

Ynss = Qo+ b [Buofy + Bysfos + Bisfus + B,3f s + Buafura| + 1 [BooGn + B,50,8 4 B30,.3+ B2, + Bargusa| (4

Wh M _ 4 2 _
ere y“/— e an ynf/_—g,ﬁj

Expanding (4) by Taylor’s series about x;,, of each term and substituting back into equation (4), the matrix form Ax=B which

2 3
was obtained by the expression yn+a=y(xn+ah)=y(xn)+ahy’(xn)+(a:!) y”(xn)+(a:!) y'"(x,) + -+ and the
coefficients of hiy®(x,,) are equated to give:
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T
Solving equation (5) we have:[ao"glo"gli"gli’ﬁli’ﬁll’ﬁzo’ﬁzi’ﬁzi’ﬁﬁ”821}

4

T
:(1 1601 2048 104 2048 1601 29 _ 32 32 _ 29 ] Substituting the value o

"17010° 85053158505 17010 11340 2835°  2835° 11340

ao”Blo’ﬂll"Bli”Bli’ﬂ“"Bzo’ﬂzi’ﬁzl”gzi”gﬂ into equation (4) we have
4 2 4 4 2 4

2
Vsl = V0 +L 1601/, +4096f | +5616f | +4096f ; +1601f,,, +h— 29g,-128g | +128g ;—29g,., | (6)
17010 nty > sy 11340 ey 3

However, adopting the method presented in Equation (6), we require the introduction of additional hybrid off points in other
to implement the method. Hence the need to adopt hybrid block methods will be necessary. Hybrid block methods have been
found to give better approximation as seen in [10]. Following the same steps adopted above we have the following additional
methods as:

v =y 1530551 f, +1420036f | +711936 | +1429936f , +59681f.,
il 17418240 el i 3
N 4
@)
h2
+— T 126051g, —249656g | —183708g | —49720g 5 -2237g,.,
11612160 " ol el " g
y o =y,,+—[24463f,, +52928f | +44928f | +12608/ | +1153fn+1}
el 272160 el L 3
2 2 5 Y
2 (3
+ - - — —
181440[421g” 3040g 1 —4336g 1 =992g 5 43g,,+1]
4 2 4
R [6501f,, +14736f | +20736f | +11376f | +411f,,+1]
e 71680 el ! 3
4 4 5 4
)
h2
143360 [339g" _143360‘%% _22683’,,% _1464g,,+% ‘45gn+1}

Hence, equations (6) to (9) are the required one-step hybrid block method for the solution of equation (1).
Similarly, by expanding equation (3) and after some algebraic simplifications, we obtained the two-step hybrid block
method as:

28982995193f, —12506560512f" | —130637631488f | +192253458432f ,
n+— n+— n+—

h
=y, +———— | +603645798000f,,,,+192253458432 —130637631488
Y2 Y 379915160625 f‘n+1 f;ﬁ_% f;ﬁ_%

—-12506560512f1 , —28982995193f, ., (10)
n+—
L 4
, 28982995193g, —430636032g | —1705395328g | —2528949248g ,
h H+Z n+§ n+Z
[ o —
10854718875 | +2528949248g 5 +1705395328g 5 +430636032¢g , —17427733g,,,

n+— n+— n+—
4 2 4

with additional method as:
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[29781446118518135f, ~72999059705411552f [17504931897415g, —531530319976912g |
n+Z n+Z
—407731775173649472f | —407832499620458976f -4889514566384g | —5635844792319056g
n*; n+z ) n+5 n+Z
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+274738316926528f 5 +30500446325472f -943397477568g 5 —65263232592g
n+— n+— n+— n+—
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(456032697335, —540514522112f [10185173516095g, —288488734964224g
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Hence, equation (10) to (17) are the required two-step hybrid block method for the solution of equation (1).

3. Basic Properties of the Methods
3.1. Order of One-Step Method

We define a linear operator L by:

L y(x):h] :Zk:[ajy(x,, +jh)=hB,y (x, + jh) |

J=0

where y(x) is an arbitrary test function that is continuously differentiable in the interval [a,b] .

y(x, + jh) and y (x, + jh) by Taylor’s series about the point x, and collecting like terms in h and y gives:

L[y(x):h]:Coy(x)+C1hy'(x)+C2h2y“(x)+...+Cphpyp (x) [10]

Definition 3.1
According to [10], the differential equation (18) and the associated LMM are said to be of order p if

G=G=6G=.C,=0,C,;#0
Definition 3.2
The term C,,; is called error constant and it implies that the local truncation error is given by
P+l (pﬂ) p+2
Epu =Cpuh” )\ (x,) +0(h ) [10]
Following Definition (3.1) and (3.2), we obtained the order of one-step method as;

C,=C =C,=C,=C,=C5=C,=0=C,=0=Cy=Cy=C,y =0,ie P=10

T
With error constant as ( 1 551 1 | j

1030045040640 " 1318457652019200 " 2060090081280 " 1808583884800

3.2. Consistency and Zero Stability of One-Step Method

17

(13)

Expanding

(19)

(20)

€2y

To analyze the one-step hybrid block method for zero-stability, the modulus of the roots of its first characteristic polynomial
is expected to be simple or less than one [10]. Thus, the corrector of the one-step hybrid block method is normalized to give the

first characteristic polynomial [10]. Putting equation (6) to (9) in matrix form as a block we obtain:

_y 1_ _y 3_
n+— n——
1 0 0 0 41 To 0 0 1
0 1 0 of|Y.1] [0 o o 17,2t
2 | = 2 |+
0 0 1 0 0 0 0 1
y Yo
0 0 0 1| 3] |0 0 0 1| "y
_yn+1 i _yn i
i 30791 1. _ [ 89371 103 89371 59681 | _
0 0 0 f r
3483648 || /,.1 | | 1088640 2520 1088640 17418240 || /,.1
o o0 o 246 | Y1 | 1654 52 3% nss || !
. 272160 || e | | 8505 315 8505 272160 N
o o0 o 6501 | 921 81 711 411 .
71680 || “n*, | | 4480 280 4480 71680 s
o o o 1601 || ;| | 2048 104 2048 1601 fon |
L 17010 | | 8505 315 8505 17010 |
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26051 | [ 31207 81 1243 2237 |
0 0 0 e (] |- - - - g 1]
11612160 || &,43 1451520 5120 290304 11612160 || &1
01 4 19 1 31 43 4
100 Y e |[8e || T 40 5670 181440 || Sael
h 2 |+ 2 (22)
339 81 183 9
0 0 0 g -1 - - - g 3
143360 ey 5120 17920 28672 g
0 0 0 i 1 &n | _i 0 i _i | 8n+1 j
i 11340 | | 2835 2835 11340 |
The following matrix difference equation will be in the form:
A(O)Yn - A(l)Yn_1 P [ B(‘)Yn + B(‘)Yn _1] (23)
The first characteristics polynomial of the matrix in equation (22) is given by
R(Z)=det| 24" ~ 4 | (24)
where
1 0 0 0 0 0 01
= 0 1 0 0 = 0 0 01
0 0 1 0| 0 0 01
0 0 0 1 0 0 01
This implies that;
1o 0 0 0 0 01
0 1 0 0 0 0 01
R(Z)=det| Z -
0 0 1 0 0 0 01
[0 0 0 1 0 0 01
[z o 0 0 0 0 01 Z 0 0 -1
0 z 0 0 0 0 01 0 z 0 -1
=det - =det
0 0 VA 0 0 0 01 0 0 Z -1
1[0 0 0 Z 0 0 01 0 0 0 Z-1

R(z)=[2*(2-1)]
If R(Z)=0

R (Z ) =0 yields roots Z =0,0,0,1 . Therefore, the one-step hybrid block method is zero-stable.
Furthermore, the one-step hybrid block method is said to be consistent if it has order p =1[10]. Therefore, the one-step

hybrid block method convergences. Finally, the region of absolute stability is determined by obtaining the stability polynomial.
Hence, the stability polynomial for one-step hybrid block method is

gotten as:

241811, 145577 5 4151159 , 1729 3
1371686400~ 24494400~ 96446700 2835 4

where z = Ah. Plotting the roots of the stability polynomial with MATLAB software, displays the region of absolute stability as
shown below.
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Region of Absolute Stability of one-step hybrid Block Method for solution of ODEs

0.8

0.6

0.4

0.2

Im(z)
o

Figure 1. Region of Absolute stability of one-step hybrid block method.

3.3. Order of Two-Step Hybrid Block Method

Similarly, we obtained the order of the two-step hybrid block method as:

G=CG=0G=0G=0=0G=CG=0=0CG=CG =G,
= =G, =CG;3=C4=C5=C=C; =C5 =0,

iep=18
With error constant as

25881301

408018386767

3292740967

2034926885591869827317760000 " 66680484187074390501548359680000

193559539

25881301

520941282711518675793346560000 " 30489476080052304756080640000

679622015

1523947

4069853771183739654635520000 " 106688774699319024802477375488°

1282974007

Furthermore, to analyze the two-step hybrid block method
for zero-stability, the modulus of the roots of its first
characteristic polynomial is expected to be simple or less
than one as shown above. Thus, the corrector of the two-step

hybrid block method are normalized to give the first
0 0 0 1
characteristic polynomial as: | , 0 _|0 0 0 1|| with
0 0 0 1
0 0 0 1

roots satisfying |Z j| <1

The two-step hybrid block method is consistent if it has
order p=1 as satisfied above. Therefore, the two-step
hybrid block method is convergent [6].

238199031875408630906880000 " 194403743985639622453493760000

4. Numerical Results of the New Methods

In this section we presented some numerical results to
compare our new hybrid block methods with other existing
methods. The following notations are used in the tables of
values:

1) ISHBM: New One-Step Hybrid Block Method.

2) 2SHBM: New Two-Step Hybrid Block method.

3) Error = Computed solution Minus Exact Solution.

Problem 1: [10]

y(l) =0.51-y),y(0)=0.5,h=0.1 with exact solution
y(x) =1-0.5¢7"%F
Problem 2: [10]
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y(l) =y, »(0) =1,h = 0.1 with exact solution y(x)=e™" the tank at time t. we know that y=100 when t=0. Thus, the
Problem 3: [8] initial value problem modeling the mixture process is;

In an oil refinery, a storage tank contains 2000 gal of . 45

gasoline that initially has 100 Ib of an additive dissolved in it. Y =30 000 -51) (0)=100.1=0.1
In the preparation for winter weather, gasoline containing 2 1b

of additive per gallon is pumped into the tank at a rate of
40galmin~1the well-mixed solution is pumped out at a rate of
40galmin~!. Using a numerical integrator, how much of the
additive is in the tank 0.1, 0.5 and 1 min after the pumping
process begins?. Let y be the amount (in pounds) of additive in

With theoretical solution:

3900

y(r)=2(2000-5¢)- (000) (2000-5¢)°

Table 1. Comparison of computed results for problem 1.

X Exact solution Computed solution (Zurni, et al., 2016) Computed solution (1 SHBM) Computed solution (2 SHBM)
0.1  0.52438528774964299546  0.52438528774960472804 0.52438528774964299544 0.52438528774964299544
0.2  0.54758129098202021342  0.54758129098194536511 0.54758129098202021339 0.54758129098202021339
0.3  0.56964601178747109638  0.56964601178736527269 0.56964601178747109634 0.56964601178747109634
04  0.59063462346100907066  0.59063462346087361956 0.59063462346100907061 0.59063462346100907061
0.5 0.61059960846429756588  0.61059960846413739010 0.61059960846429756581 0.61059960846429756581
0.6  0.62959088965914106696  0.62959088965895722513 0.62959088965914106688 0.62959088965914106688
0.7  0.64765595514064328282  0.64765595514044005788 0.64765595514064328272 0.64765595514064328272
0.8  0.66483997698218034963  0.66483997698195855368 0.66483997698218034951 0.66483997698218034951
0.9  0.68118592418911335343  0.68118592418887672320 0.68118592418911335330 0.68118592418911335330
1.0 0.69673467014368328820  0.69673467014343242661 0.69673467014368328806 0.69673467014368328806

Table 2. Comparison of errors for problem 1.

Computed solution in [11] ERROR in [11] ERROR (Zurni et al., 2016) ERROR (1 SHBM) __ ERROR (2 SHBM)

0.52438528774964238100 6.144610° 3.826740E-14 2.10% 2.10%
0.54758129098201904445 1.1689710°" 7.484830E-14 3.10% 3.10%
0.56964601178746942845 1.6679310"° 1.058240E-13 4,107 4,107
0.59063462346100695522 2.11544 10°° 1.354510E-13 5.10% 5.10%
0.61059960846429505054 2.51534 107 1.601760E-13 7.10% 7.10%
0.62959088965913819578 2.87118 107 1.838420E-13 8.107% 8.107%
0.64765595514064009648 3.18634 1077 2.032250E-13 1.010% 1.010%
0.66483997698217688570 3.46393 107 2.217960E-13 1.210% 1.210%
0.68118592418910964657 3.70686 10" 2.366300E-13 1.310% 1.310%
0.69673467014367937035 3.91785 107 2.508620E-13 14107 14107

Table 3. Comparison of computed results for problem 2.

X Exact solution Computed solution (Zurni et al.,, 2016) Computed solution (1 SHBM) Computed solution (2 SHBM)

0.1

0.90483741803595957316

0.90483741804503260091

0.90483741803595957316

0.90483741803595957320

0.2 0.81873075307798185867  0.81873075309534995788 0.81873075307798185866 0.81873075307798185873
0.3 0.74081822068171786607  0.74081822070486153894 0.74081822068171786605 0.74081822068171786615
0.4 0.67032004603563930074  0.67032004606407889464 0.67032004603563930073 0.67032004603563930085
0.5 0.60653065971263342360  0.60653065974444846468 0.60653065971263342359 0.60653065971263342372
0.6 0.54881163609402643263  0.54881163612895298782 0.54881163609402643261 0.54881163609402643276
0.7 0.49658530379140951470  0.49658530382799175192 0.49658530379140951469 0.49658530379140951484
0.8 0.4493289641172215914 0.44932896415534885121 0.44932896411722159141 0.44932896411722159157
0.9 0.40656965974059911188  0.40656965977917485733 0.40656965974059911186 0.40656965974059911203
1.0 0.36787944117144232160  0.36787944121046227174 0.36787944117144232157 0.36787944117144232174

Table 4. Comparison of errors for problem 2.

Computed solution In [11] ERROR In ['11] ERROR (Zurni etal., 2016) _ ERROR (1 SHBM) ERROR (2 SHBM)

0.90483741803610926985 1.496966910"3 9.0730E-12 0.0 4.107%

0.81873075307825276100 2.7090233107" 1.1768E-11 1.10%° 6.10%

0.74081822068208554991 3.6768384 107" 2.3144E-11 2.10%° 8.10%°

0.67032004603608289288 44359214 10 2.8440E-11 1.102° 1.110%°
0.60653065971313514706 5.0172346 10" 3.1815E-11 1.10%° 1.210"
0.54881163609457120641 5.4477378 10" 3.4927E-11 2.10%° 1.310"
0.49658530379198460169 5.7508699 1073 3.6582E-11 1.102° 1.410"°
0.44932896411781628883 5.9469740 10" 3.8127E-11 2.10%° 1.410"
0.40656965974120447940 6.0536752 10" 3.8576E-11 2.10%° 1.510°"
0.36787944117205094291 6.0862131 107" 3.9020E-11 3.10%° 1.410%°
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Table 5. Comparison of computed results and error for problem 3.
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X Exact solution Computed solution (2SEM) Zurni et al., 2016) Computed solution (1 SHBM) Computed solution (2 SHBM)

0.1  107.7662301168309486 107.76623267141251405 107.76623009862013152 107.76623014039012242

0.2 115.5149409193028512 115.51494346840455900 115.51494091641989830 115.51494096066439577

0.3  123.2461630508845221 123.24616814117862409 123.24616306468206404 123.24616314285139165

0.4  130.9599271090910725 130.95993218819786255 130.95992714090696968 130.95992729871549133

0.5  138.6562636455413535 138.65627125250773431 138.65626369669868680 138.65626393810552775

0.6 146.3352031660153396 146.33521075612409816 146.33520323782240227 146.33520356676826936

0.7 153.9967761305114566  153.99678623520317743 153.99677622426174555 153.99677664466866431

0.8  161.6410129533038516 161.64102303550463010 161.64101307027605861 161.64101358604710338

0.9  169.2679440029996051  169.26795658656269977 169.26794414445760852 169.26794475947662503

1.0 176.8775996025958863  176.87761215807155490 176.87759976978874276 176.87760048792006343
Table 6. Comparison of errors for problem 3.

X ERROR (Zurni et al., 2016) ERROR (1 SHBM) ERROR (2 SHBM)

0.1 2.554000E-06 3.061396905 107 2355917392 107

0.2 2.549000E-06 4.990175158 10°*® 5.815528062 107

0.3 5.090000E-06 7.053786702 10°® 1.0564381889 107

0.4 5.079000E-06 9.250752068 10°® 2.0458322997 1077

0.5 7.607000E-06 1.1579590936 107 3.0877762970 107

0.6 7.590000E-06 1.4038822077 107 4.1819303026 107

0.7 1.010000E-05 1.6626963417 107 53279516340 107

0.8 1.008000E-05 1.9342531985 107 6.5254947373 107

0.9 1.258000E-05 2.21840443929 107 77742111078 107

1.0 1.256000E-05 2.5150014581 1077 9.0737492156 10”7
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Figure 2. Error graph of problem 1.
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Figure 3. Error graph of problem 2.
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Figure 4. Error graph of problem 3.

5. Conclusion

This article presented a new one and two-step hybrid
block methods for solving first order ordinary differential
equations. The new methods is seen to be quite flexible as
the algorithm simultaneously produce block methods of
step length k& for solving first order ordinary differential
equations. The new methods were seen to satisfy the basic
properties to ensure convergence and their accuracy was
also displayed which can be seen in the tables above. It was
also observed, it is better to increase L [6] rather than the
step k as shown in our numerical results above. Also, It was
difficult to satisfy the zero-stability for larger k. Thus, this
new methods are quite suitable for developing hybrid block
methods for solving first order Ordinary Differential
Equations.
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